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Abstract 

Soil moisture (SM) is a crucial hydrological variable essential for ecosystem functioning and 

the provision of ecosystem services. Given its strong relationship with terrain characteristics, 

Digital Elevation Model (DEM)-based indices are increasingly used to estimate SM across 

different ecosystems. However, a comprehensive comparison of these indices, particularly at 

a local scale and using high-resolution DEMs, is lacking. This study aims to compare three 

topography-based indices for spatiotemporal soil moisture modelling in the Salzach river 

floodplains in Austria. I utilized LiDAR-derived high-resolution DEMs (1m) from 2016 and 

2022 to calculate the Depth-to-Water, Height-Above-the-Nearest-Drainage, and SAGA 

Wetness Index maps. These maps were aggregated and statistically compared. The findings 

reveal a heterogeneous SM pattern in the study area, with strong correlations between the 

Depth-to-Water and Height-Above-the-Nearest-Drainage indices, while moderate 

correlations were observed between the SAGA Wetness Index and the other two indices. 

Temporal changes between the two years were not statistically significant. Further evaluation 

with field data, an analysis of the influence of the Flow Initiation Area (FIA) on the resulting 

SM maps and the incorporation of additional site parameters and seasonal dynamics could 

enhance the accuracy and applicability of these indices. The results of this research are 

valuable for environmental planning and management, contributing to improved decision-

making and conservation of floodplain ecosystems in Austria. 

1 Introduction 

Soil moisture serves as a pivotal ecosystem condition variable that shapes ecosystem 

functioning in floodplains and riparian forests (Yin et al., 2019). Thus, precise and spatially 

explicit SM monitoring is indispensable for effective environmental management on 

different spatial scales. To estimate SM conditions, DEM-based techniques have seen a rise 

in development and application (Larson et al., 2022), with several advantages over optical 

remote sensing, such as less data intensity and the applicability to forested areas (Larson et 

al., 2022). As topography is one of the key factors influencing hydrological pathways and 

hence SM (Bell et al., 1992; Famiglietti et al., 1998), topography-based indices assume lower 

areas near water sources typically to be wetter than higher areas further away from these 

sources (Nobre et al., 2011).  
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The Topographic Wetness Index (TWI) was one of the first indices in this field (Beven & 

Kirkby, 1979). It has been employed in SM modelling over various ecosystems (Moore et 

al., 1993), indicating the likelihood of an area accumulating water. Regions with extensive 

contributing drainage areas and gentle slopes are linked to high TWI values, suggesting a 

greater potential for SM accumulation. In contrast, steep, well-drained areas exhibit low TWI 

values. The SAGA Wetness Index (SWI), developed by Böhner and Selige (2002), modifies 

the TWI by adjusting the computation of the specific catchment area. Rather than treating the 

flow as a thin film, it provides a more realistic representation of SM potential by considering 

cells in valley bottoms with minimal vertical distance to a channel.   

In recent times, the Depth-to-Water (DTW) index, as first described by Murphy et al. (2007), 

has been used for riparian and peatland soil wetness mapping in research and public 

authorities in Scandinavia and Canada (Lidberg et al., 2020; Mohtashami et al., 2022). DTW 

describes the elevation difference (m) to the nearest surface water source along the 

cumulative least-cost slope path and, thereby, identifies low-lying areas susceptible to surface 

saturation (Schönauer et al., 2024). Similar to the DTW, the Height-Above-the-Nearest-

Drainage (HAND) index, developed by Rennó et al. (2008), is also described as the vertical 

elevation difference between a point in the landscape and the nearest surface water source. 

However,  HAND is computed using the downslope flow path. Originally developed for 

Amazon regions, it is now incorporated into several models for improved flood forecast such 

as the integrated National Water Model –Height Above Nearest Drainage (NWM–HAND) 

flood mapping approach (Johnson et al., 2019). 

While the three indices have already proven their suitability in wetlands of different climates, 

a comprehensive spatiotemporal comparison between them is still missing, especially in 

temperate regions. In addition to that, studies have already proven the applicability of DTW 

and HAND with high-resolution DEMs at regional and national levels (Ågren et al., 2021; 

Mohtashami et al., 2022), but there is less evidence for their utility on local scales. This study, 

therefore, aims to compare DTW, HAND and SAGA Wetness Index maps on a small scale 

in the Salzach river floodplains. Consequently, the following research questions are 

addressed: a) To what extent are observed indices suitable for small-scale high-resolution 

SM modelling in floodplain ecosystems and what differences can be observed between them? 

b) What is the spatiotemporal variability of SM as depicted by the three indices in the study 

area? To answer the research questions, high-resolution DEMs of the study area are obtained 

for the years 2016 and 2022. The resulting index rasters are further aggregated and 

statistically evaluated.  

2 Material and Methods 

2.1 Salzach river floodplains 

The test site for this study covers the Weithwörth floodplain and the Anthering floodplain 

which are located in the Salzach river floodplains (Salzburg, Austria; UL: N 47°56’12” / E 

12°56’24”; LR: N 47°52’17” / E 13°00’22”) (Fig. 1). The area is a semi-natural Natura 2000 
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site, which has recently undergone 

renaturation measures as part of an 

EU-funded LIFE project, enabling 

more natural hydrodynamic 

conditions (Hengl et al., 2012). The 

site mainly consists of riparian 

forests and represents a habitat for 

endangered birds and amphibians 

(Strasser & Lang, 2015). The soil in 

the area is characterized by gleyed, 

calcareous brown alluvial soil 

composed of fine alluvial deposits 

of the Salzach (BFW, 2023). The 

SM varies from moderately moist 

to wet, with moderate water storage 

capacity and permeability. Certain 

areas experience persistent wetness 

due to a constantly high 

groundwater level. The soil texture 

ranges from silt to sandy silt, with 

occasional occurrences of loamy 

silt.  

2.2 Data sources 

High-resolution Digital Elevation Models and vector stream data were used as the basis for 

deriving the SM maps. The DEMs were obtained from the Federal State of Salzburg 

(SAGIS). They are derived from airborne laser scanning data and obtained for the years 2016 

and 2022. The DEMs have a spatial resolution of 0.5 and 1 meter and are provided in 

GeoTIFF format. Before conducting the actual pre-processing steps, the DEM data was 

merged, resampled to 1 meter (bilinear resampling) and clipped to the boundary of the study 

area which had been buffered by 100 meters. This avoids potential edge effects when 

calculating the indices. After index calculation, the buffered area was clipped to the actual 

study area size.  

The vector stream data was obtained from the Austrian Federal Office for Metrology and 

Surveying (BEV), clipped to the study area and used for stream burning.  

2.3 Data pre-processing and stream extraction 

To use the DEMs for hydrological modelling, they must first be corrected using pre-

processing steps which were conducted in ArcGIS (Version 3.3.0).  

First, the fillburn algorithm from the Whitebox Geospatial Analysis Tools (GAT) was 

utilised. This function was used to burn the vector stream data into the DEM, which has been 

shown to improve the overall accuracy of the results (Lidberg et al., 2017). Simultaneously, 

sinks were filled, which represents a widely known method accounting for natural 

depressions or artefacts which potentially distort the generation of downstream flow paths 

Figure 1: Study area.  
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(Lindsay, 2016). Filling was preferred over breaching algorithms because the study area lacks 

anthropogenic features for which breaching would be more appropriate (Lidberg et al., 2017).  

Subsequently, flow direction and flow accumulation were derived from the hydrologically 

corrected DEMs. The Deterministic-8 (D8) method was employed for this purpose 

(O'Callaghan & Mark, 1984), as there are only minor accuracy differences compared to more 

complex methods when applied to DEMs of high resolution (Lidberg et al., 2017). A flow 

initiation area (FIA) of 0.5 hectares was set to extract streams from the flow accumulation 

raster, aligning with threshold ranges used in studies with similar spatial resolution (Ågren 

et al., 2021). This relatively low FIA is appropriate for analyses of small-scale areas which 

incorporate high-resolution DEMs (Bhowmik et al., 2015). Furthermore, a low FIA helps to 

consider the small watercourses and hydrological connectivity typical wetlands that official 

stream data often miss (Ågren & Lidberg, 2019). 

2.4 Index calculation  

After pre-processing and stream extraction steps, the indices were calculated using ArcGIS 

Pro (Version 3.3.0) and SAGA GIS (Version 7.8.2). The SAGA Wetness Index was 

calculated using the eponymous module in SAGA GIS. It describes the tendency of a cell to 

be wet, based on Eq. 1, where SCAM represents the specific catchment area and ß represents 

the slope of the grid cells in degrees (Böhner & Selige, 2002). 

(1) 𝑊𝐼𝑠 =  ln (
𝑆𝐶𝐴𝑀

tan β
)  

A modified approach by Schönauer et al. (2021) was followed to calculate DTW, as 

automated tools for DTW calculation are not publicly available. The DTW index is defined 

as the cumulative slope along the least-cost path from a cell in the landscape to the nearest 

flow channel (Murphy et al., 2007), described by Eq. 2.  

(2) 𝐷𝑇𝑊 (𝑚) = [∑
𝑑𝑧𝑖

𝑑𝑥𝑖
] 𝑥𝑐 

A slope map was derived from the original (not hydrologically corrected) DEM and used 

with the stream raster as input for the Accumulated Cost module in SAGA GIS to produce 

the DTW raster.  

HAND was calculated using the Topography Toolbox Pro from Dilts (2023) in ArcGIS Pro. 

It is defined as the elevation difference between a landscape cell and the nearest surface water 

cell along the local drainage path determined by the flow direction grid (Rennó et al., 2008).  

2.5 Index aggregation 

To better represent the SM pattern and answer the second research question, the index values 

were aggregated in hexagonal grids with a diameter of 100 meters. The individual index grid 

values were averaged using zonal statistics (ArcGIS Pro, Version 3.3.0). As the Kruskal-

Wallis test (see Chapter 2.6) did not show significant differences between the two years, the 

temporal component could be neglected here and the values were averaged over both years 

to depict a more accurate long-term picture of the SM patterns in the area. For the 

aggregation, the normalized and inverted (see Chapter 2.6) values were classified into five 

quintiles.   
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2.6 Statistical evaluation 

Different statistical components and figures were used to address the research questions. The 

programming environment RStudio (Version 2023.12.1+402) was employed here. As a basis 

for the analysis, random points were generated (n = 1000) to reduce computing time. Index 

values for all years and indices were extracted at the random point locations. 

A preliminary data check with the Shapiro-Wilk (Shapiro & Wilk, 1965) and Levene test 

(Glass, 1966) showed heteroscedasticity and non-normal distribution of the residuals. Hence, 

the non-parametric Kruskal-Wallis test was applied (Kruskal & Wallis, 1952), followed by 

the Dunn test as post hoc (Dunn, 1964). To facilitate better interpretation and comparison, 

the index values were normalized using a linear min-max normalization. When interpreting 

SWI, higher values indicate wetter conditions, whereas for DTW and HAND, higher values 

represent drier conditions. Thus, DTW and HAND values were inverted after normalization 

to provide more meaningful and comparable results. All data and code can be found on the 

project’s GitLab page (https://git.sbg.ac.at/st24_856165/topmod).  

3 Results 

Figure 2 shows the index maps for each index for both years. Visually examining the maps, 

one can see that the larger streams, lakes, and the Salzach are well identified by all indices. 

Figure 2: Index maps of the indices of 2016 (left) and 2022 (right), respectively.   
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However, the small streams in the SWI maps differ notably from those in the other two 

indices. Looking at the temporal component, there are barely any differences between the 

two years. However, there are noticeable differences in the fine patterns of the SM maps. The 

DTW primarily models wet areas near the stream channels, while the SWI shows contrasts 

between the stream channels and adjacent areas. This contrast is not observed along the 

Salzach river bank, where all indices model a strong contrast in SM. 

Examining the statistics in 

Table 1, the SWI reaches mean 

values of 0.493 in 2016 and 

0.497 in 2022, while the mean 

values for DTW and HAND 

are consistently higher at 0.829 

and 0.888 (2016) and 0.829 

and 0.887 (2022). The median 

values confirm this picture: the 

median of the SWI is 0.438 in 

2016 and increases slightly to 

0.452 in 2022, which is still 

well below the median values 

of DTW (0.871 in both years) and HAND (0.935 in 2016 and 0.933 in 2022). The standard 

deviations (SD) for SWI, DTW and HAND show different scatter patterns. The SWI has an 

SD of 0.231 in 2016 and 0.223 in 2022, which indicates moderate dispersion. In contrast, the 

DTW shows a lower standard deviation (0.175 in 2016 and 0.172 in 2022), and HAND shows 

the lowest (0.144 in 2016 and 0.145 in 2022). This pattern is also reflected in the boxplots 

(Fig. 3). The Kruskal-Wallis test revealed significant differences between the indices (p-

value < 0.05). Post-hoc analysis using Dunn’s test showed significant pairwise differences 

between all indices.   

In contrast, the Kruskal-

Wallis test shows no 

statistically significant 

differences between the 

years (p-value = 0.6875). 

The mean values show 

that the SWI increased 

slightly in 2022 (0.497) 

compared to 2016 (0.493). 

The mean values for 

DTW and HAND in 2022 

remain almost identical to 

the 2016 values, with 

DTW showing a value of 

0.829 in both years and 

HAND showing a slight 

decrease from 0.888 to 

0.887. The median values 

show an increase for the SWI from 0.438 in 2016 to 0.452 in 2022. The median for the DTW 

remains unchanged at 0.871, while the HAND median shows a minimal decrease from 0.935 

Figure 3: Boxplots of normalized and inverted index values.  

Table 1: Descriptive statistics of the index values. Mean 

and median of DTW und HAND were inverted to align 

with Fig. 3.  
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in 2016 to 0.933 in 2022. The standard deviation (SD) for the SWI has decreased slightly, 

from 0.231 in 2016 to 0.223 in 2022, indicating a lower dispersion of the data in 2022. SD 

has decreased from 0.175 in 2016 to 0.172 in 2022 for the DTW. SD remains almost 

unchanged for HAND, with a minimal increase from 0.144 (2016) to 0.145 (2022).  

The scatterplot matrix (Fig. 4) illustrates the pairwise relationships between the metrics 

DTW, HAND, and SWI for the years 2016 and 2022, along with their corresponding 

histograms and correlation coefficients. DTW and HAND display right-skewed distributions, 

indicating a higher frequency of lower values. In contrast, the SWI metric shows a more 

symmetric distribution for both years, with a slight skewness towards the centre. Cross-metric 

correlations reveal differing patterns. DTW and HAND metrics show strong positive 

correlations in both years, with ~0.8. Conversely, the correlations between DTW and SWI (~ 

-0.49), as well as HAND and SWI (~ -0.43), are moderately negative.  

Examining the correlation coefficients between the years, we observe high positive 

correlations within the same metric over time. DTW shows a correlation of 0.94. Similarly, 

HAND (0.92) and SWI (0.91).  

Figure 5 depicts the distribution of SM across the study area. The maps show a heterogeneous 

SM pattern. However, all indices reveal a similar overarching pattern, with particularly moist 

locations in the northeastern part of the area and a dry ridge extending from south to north, 

right of the Salzach. While the patterns in the DTW and HAND maps are quite similar, the 

SWI estimates a very moist region in the southwestern part of the area. In contrast, HAND 

indicates a rather dry location in this region. The composite map presents a similar picture to 

Figure 4: Scatterplot matrix of the indices.  
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the other indices, highlighting particularly moist locations in the northeast and south of the 

area. The dry ridge is also clearly visible on this map.  

4 Discussion 

The results demonstrate the general suitability of the indices for small-scale, high-resolution 

SM modelling. Both the index value maps and the aggregated index maps show similar SM 

patterns, and larger streams, lakes, and the Salzach were well identified by all indices. The 

relatively dry areas to the right of the Salzach, identified by all indices, may be attributed to 

bank reinforcements in the area, which has been impacted by anthropogenic influences in the 

past (Strasser & Lang, 2015). Changes in maximum values between the years for the same 

index can be attributed to local renaturation measures or minor differences in data acquisition 

or processing. However, year-to-year differences are minimal, with only slight variations 

observed in central tendency and variability, suggesting data stability and robust index 

calculation. 

The entire study hinges on the assumption that SM is strongly influenced by topography. 

Although other factors such as soil texture and type were not precisely incorporated into the 

methodology, it is reasonable to assume that topography significantly affects SM in the 

humid wetland study area. Furthermore, the small size of the study area indicates a uniformity 

of site conditions in terms of geological and soil properties. However, the incorporation of 

soil, climatic and other parameters for index calibration could enhance the study’s accuracy 

and the index assessment since these parameters can strongly influence the impact of 

morphology on SM (Murphy et al., 2009). 

Figure 5: Soil moisture pattern in the study area of A) DTW B) HAND C) 

SWI D) All indices. A, B and C were averaged over years, D was averaged 

over indices and years. 

A B C D 
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Although the selected method gives a good overview of wet and dry soil conditions, the 

results are less indicative for deeper soil layers, as the influence of topography decreases with 

depth (Oltean et al., 2016). Moore et al. (1993) found that TWI and other terrain attributes 

explained significant variations in soil properties, with the strongest correlations in the 

organic horizon.  

The distributions of values for DTW and HAND are notably right-skewed, with many values 

near zero. This can be explained by the flat terrain and the high groundwater levels described 

by the BFW (2023). Despite the significant differences in the central tendencies of the 

indices' values, the moderate to strong correlations between the indices underscore their 

suitability for the test area and the spatial resolution of the data. The correlation of SWI with 

the other indices is surprising, since, for instance, Nobre et al. (2011), did not find a 

correlation between HAND and TWI. Additionally, previous studies indicate the unreliability 

of the TWI when calculated on high-resolution DEMs (Ågren et al., 2021). The moderate 

correlation in this study could be possibly due to the modified calculation of the SWI’s 

specific catchment area, which improves the flow modelling of water in flat areas (Böhner & 

Selige, 2002). This could have improved the SWI’s performance in the floodplain area, 

although TWI generally performs poorly in flat areas (Mattivi et al., 2019). 

Next to these factors, the results of the SWI calculation are significantly influenced by the 

chosen parameters and the specific environmental context, hampering index calibration and 

influencing the results. Establishing a universal calculation method for TWI parameters is 

challenging due to its inherent scale dependency and the variability in methods used for 

computing drainage paths. Additionally, the optimal resolutions for TWI calculations can 

vary depending on the landscape (Ågren et al., 2015), and TWI itself fluctuates with changes 

in landscape, climate, and scale (Mattivi et al., 2019).  

Thus, the results of HAND and DTW in this study are probably more valid than those of the 

SWI. HAND offers more universal climatic and scale-independent applicability due to the 

constant reference point provided by the drainage network (Nobre et al., 2011). The DTW 

index has proven applicable to flat areas (Echiverri & Macdonald, 2019), particularly in 

riparian forests and formerly glaciated landscapes in Scandinavia (Larson et al., 2022). 

Moreover, DTW is particularly accurate when using high-resolution LiDAR DEMs (Murphy 

et al., 2009). However, the results of the DTW and HAND maps are heavily dependent on 

the chosen FIA for stream extraction. Lower FIA values result in more predicted streams and 

wetter modelled outcomes for DTW and HAND. In this study, the FIA was selected after a 

literature review and by considering the humid site conditions. Nevertheless, there is still a 

seasonal bias (Ågren & Lidberg, 2019), and FIA selection is often prone to errors, resulting 

in over- or underestimation of streams. Since a small FIA was chosen for this study, there is 

a potential overestimation of streams. This could also have led to DTW and HAND 

estimating the area as wetter overall, while the SWI modeled drier values. Reference data 

such as groundwater level measurements or field data are therefore required to further 

validate the indices. Furthermore, it highlights the need for further research on the FIA on 

the index results in the study area.  
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5 Conclusion and Outlook 

This study compared topography-based approaches for SM estimation using high-resolution 

DEMs in a small-scale floodplain area. Visual and statistical index validation demonstrates 

general suitability of the indices for SM modelling, evidenced by similar SM patterns and 

moderate to strong correlations across the indices. However, as the SAGA Wetness Index 

differs most from the other two indices and it is sensitive to climate and scale, it should be 

applied with careful consideration. Here, further index validation and the incorporation of 

reference data are necessary to enhance the accuracy of the assessment.  

Further research must examine the influence of the FIA on the results and integrating 

climatic, hydrographic, and soil parameters would improve index accuracy and applicability. 

Additionally, incorporating seasonal changes in SM regimes into the index calculation 

workflow could also provide more accurate patterns and adapt decision-making to temporal 

differences.  
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